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Abstract—In recent years, real-world attacks against PKI take
place frequently. For example, malicious domains’ certificates
issued by compromised CAs are widespread, and revoked cer-
tificates are still trusted by clients. In spite of a lot of research
to improve the security of SSL/TLS connections, there are
still some problems unsolved. On one hand, although log-based
schemes provided certificate audit service to quickly detect CAs’
misbehavior, the security and data consistency of log servers
are ignored. On the other hand, revoked certificates checking
is neglected due to the incomplete, insecure and inefficient
certificate revocation mechanisms. Further, existing revoked cer-
tificates checking schemes are centralized which would bring
safety bottlenecks. In this paper, we propose a blockchain-based
public and efficient audit scheme for TLS connections, which
is called Certchain. Specially, we propose a dependability-rank
based consensus protocol in our blockchain system and a new
data structure to support certificate forward traceability. Fur-
thermore, we present a method that utilizes dual counting bloom
filter (DCBF) with eliminating false positives to achieve economic
space and efficient query for certificate revocation checking.
The security analysis and experimental results demonstrate that
CertChain is suitable in practice with moderate overhead.

I. INTRODUCTION

As HTTPS has been globally adopted in various online ser-

vices, e.g., e-business, e-banking, and e-government, Transport

Layer Security (TLS) protocol, the cornerstone of HTTPS,

plays a critical role in secure web-based connections over a

computer network. In TLS, authentication and secure connec-

tion establishment are built based on Public Key Infrastructure

(PKI) whose core component is certificate authorities (CAs).

By signing and issuing certificates, CAs provide the trust foun-

dation to guarantee integrity, confidentiality, and undeniability

for web traffic.

However, recent compelling real-world attacks have demon-

strated existing CAs’ vulnerability. For example, some well-

known CAs, e.g., TurkTrust [1], CNNIC [2], DSDtestProvider
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& eDellRoot [3], were compromised to issue unauthorized

certificates for malicious domains. Such CAs’ failures can

further be exploited by adversaries to mount Man-in-the-

Middle (MitM) attacks. To tackle this issue, researchers have

presented a variety of proposals, which can be generally

classified into two categories: CA-based trust disperse schemes

and log-based misbehavior monitor schemes. CA-based trust
disperse schemes mainly focus on diminishing the trust of

CAs by introducing multiple CAs or other entities to assist

certificate operations including (registration, update, and revo-

cation), which then prevents an individual CA from generating

unauthorized certificates. For instance, in TriPKI [4], Jing et al.

propose a tripartite PKI which utilizes threshold signature

among CAs and DNSs to avoid single-point-failure of CAs.

In Cosigning [5], Syta et al. design a multi-signature scheme

that adapts a scale of thousands of witnesses to participate in

decentralized cosigning. In ARPKI [6], Basin et al. enhance

the system security by using multiple CAs to sign and validate

certificates in a serial mode. On the other hand, Log-based mis-
behavior monitor schemes bring in log servers that maintain

a merkle Hash Tree to record certificates issued by CAs, such

as Certificate Transparent (CT) [7], Sovereign Keys (SK) [8],

AKI [9], and ARPKI [6]. The main idea of these schemes

is that by publicizing certificates, CAs’ misbehavior can be

detected in time. Generally, compared to the former, the latter

category utilizes log servers to share CAs’ responsibility in

terms of operation storage and certificate validation, and it then

results in better security and users’ web-browsing experience.

We observe that there are still several critical issues in

existing log-based misbehavior monitor schemes. First of all,

in most of existing schemes, even though multiple log servers

are employed to record certificates, the data security still

depends on an individual log server that is chosen to syn-

chronize certificates. If the chosen log server is compromised,

the data security cannot be guaranteed. In addition, due to

the expensive bandwidth cost, low query efficiency, and high

latency, many browser vendors and client applications decline

to check whether the target domains’ certificates have been

revoked. Attackers could use these revoked certificates, which

unfortunately are still considered as valid by clients, to perform

effective MitM and phishing attacks against clients. Regarding

this issue, in Certificate Issuance and Revocation Transparency

(CIRT) [10], Ryan proposes an efficient revocation mechanism

for CT, but it requires a domain to change a new identity

once his key is lost. In CRLite [11] and CCSP [12], the

authors present an efficient revoked certificate query scheme.

Unfortunately, these schemes are centralized systems which



are vulnerable to single-point-failure attacks.
Inspired by blockchain, a distributed database that is used to

maintain a continuously growing list of records in bitcoin [13],

we put forward a comprehensive certificate management sys-

tem to address the above issues in log-based misbehavior

monitor schemes. Considering its decentralization and tamper-

proof features, we intend to utilize blockchain to record

certificates and their associated certificate operations for public
audit, where anyone is allowed to verify the correctness of the

certificates operations by querying blockchain records. Note

that introducing blockchain in certificate management is not

trivial since it brings three important challenges as follows:

1) Centralization in practice. The most popular and widely

used consensus protocols in blockchain, such as PoW (Proof

of Work), PoS (Proof of stake) or DPoS (Delegated Proof of

Stake), still have privileged nodes which possess the stronger

computing ability or more stake in the system. These nodes

usually generate most of the blocks, and control the blockchain

to some extent. Such phenomenon deviates the intention of

decentralization in certificate management system. 2) Manda-
tory traversal. When directly applying the blockchain tech-

nique in a certificate management system, if we need to learn

a domain’s history certificate operations in blockchain, we

have to traverse the whole blockchain which is tedious and

time-consuming. 3) Block size limitation. The currently size

of one block in dominant blockchain system is limited [14],

while the size certificate revocation list (CRL) reaches up

to 76MB [15] in some case, which obviously exceeds the

capacity of one block. As the certificate revocation information

keeps increasing, more blocks are generated in order to store

this revocation information. In this way, checking whether a

certificate has been revoked via traversing blockchain becomes

inefficient. To improve the users’ experience, the revocation

information needs to be treated specially for efficient query

response.
In this paper, to solve the challenges discussed above, we

propose a blockchain-based public and efficient certificate

audit scheme for TLS connections, called CertChain, by in-

troducing new entities called bookkeepers to record certificate

operations into blockchain for public audit. Specifically, our

certificate management system is developed based on a four-

layer blockchain architecture which includes data layer, net-

work layer, extension layer, and application layer. In summary,

we make the following contributions:

1) To the best of our knowledge, this is the first work to

propose a decentralized public audit certificate manage-

ment framework. Through secure and efficient certifi-

cate operation queries, CertChain can resist certificate

forgery and tamper attacks effectively.

2) To avoid centralization in practice, we design a dis-

tributed dependability-rank based consensus protocol to

achieve trust dispersing.

3) To solve the mandatory traversal problem, we propose a

new data structure called CertOper to record certifi-

cates operations. The CertOper is stored in block for

operations forward traceability and efficient query.
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Fig. 1. Framework of CertChain

4) Considering the block size limitation issue, to achieve

realtime certificate validation, we exploit a revocation

checking method based on Dual counting bloom filter

(DCBF) which can markedly eliminate false positives

and ensure the practicability of our work.

5) We analyze the security of CertChain in theory. Besides,

we implement a proof-of-concept prototype and evaluate

the performance of CertChain in practice.

This paper is organized as follows. In section II, we give a

description about the system model, threat model, and design

goals. We describe the details of our CertChain in section III,

and analyze its security properties in section IV. We describe

the implementation of our prototype in section V, and evaluate

the CertChain by comparing it with other schemes. Section VI

reviews the literature related to the traditional PKI. Finally, we

conclude in section VII.

II. PROBLEM STATEMENT

A. System Model

In our system, there are four kinds of entities: client,
domain, CAs, and bookkeepers, as show in Fig. 1. A client

is the entity who intends to establish TLS connections with

a domain, while domain usually refers to a website, which

gets a certificate from a CA for secure connections. CAs,

besides signing and issuing certificates as in traditional PKI,

need to generate and sign certificate operations. To support

public audit service, we introduce the bookkeepers to store

the operations in blocks and maintain the blockchain. The

blockchain works in a permission mode which means that only

authorized nodes can participate in certificate management.

In details, a domain requests a certificate operation from

a CA, such as certificate registration, update, or revocation.

After the CA finishes the requested certification operation,

it signs the operation and broadcasts it to all bookkeepers.

A client then can validate a certificate with the assistance of

bookkeepers. There are two points worth noting here: 1) To



speed up the certificate checking process, bookkeepers arrange

and record all revocation information to DCBF stored in one

block; 2) A CA couples with a unique bookkeeper and they

share the dependability-rank (defined in III-C) that is prepared

for consensus protocol design. By querying the blockchain,

a CA manager can detect whether there exists forged or

tampered certificates for malicious domains. A domain can

also check whether its name is impersonated. We call these

two processes as self audit.

B. Threat Model

Generally, an adversary attacks CertChain for three goals:

(1) to issue a certificate for a malicious domain without

being detected; (2) to insert, delete, or tamper the certificate

operations for making clients’ certificate validation failure; (3)

to control the blockchain by attacking some bookkeepers.

From the practical perspective, we assume that an active

adversary is able to manipulate a victim’s web traffic, and it

can also compromise any entity. Furthermore, it can eavesdrop,

tamper, and forge messages among entities which commu-

nicate with each other in untrusted networks. However, we

make some standard cryptographic assumptions. For example,

the adversary is not able to forge signatures without getting

a principal’s private key. Additionally, we assume that an

adversary cannot control more than 51% bookkeepers in

blockchain.

C. Design Goals

• Consensus fairness. By dynamic accommodation, each

bookkeeper has a similar probability to generate blocks

for recording certificate operations.

• High query efficiency. All operations of a specified

certificate can be traced without traversing the whole

blockchain. Particularly, the process of certificate vali-

dation only requires to check the header block which

records the latest revocation information of all certifi-

cates.

• Intrusion tolerance. Through self audit, for a CA, even if

all its defense mechanisms are ineffective, it can still de-

tect misbehavior effectively by querying blockchain, and

then take actions to prevent attacks from deteriorating.

III. CERTCHAIN: PUBLIC AND EFFICIENT CERTIFICATE

AUDIT BASED ON BLOCKCHAIN

A. Overview of CertChain

In this paper, we design a certificate management system

based on a four-layer blockchain architecture that includes data

layer, network layer, extension layer, and application layer.

The system architecture of CertChain is exhibited in Fig. 2.

In data layer, to retain the history certificate operations, we

design a new data structure called CertOper to express

certificate operations, which is stored in blockchain in the

form of Merkle Hash Tree (MHT). We also present a dual

counting bloom filter (DCBF) for all revoked certificates with

economic storage and efficient query. In network layer, since

the size of a CertOper is about the same as a transaction
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protocol
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Network layer

Data layer CertOper MHT

P2P
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Fig. 2. Architecture of CertChain

in cryptocurrency system, the existing network protocol and

transmission mechanisms are well compatible with our system.

In extension layer, we design a distributed dependability-rank

based consensus protocol to disperse trust, and in incentive

mechanism among CAs and bookkeepers. In application layer,

we propose a distributed certificate management system in-

cluding certificate operations and certificate validation. Except

the network layer, we will give an elaborate description about

these layers in a bottom-up order.

B. Data layer

1) CertOper definition: Referring to the X.509 public

key certificate standard, we define a new data format called

CertOper that is used to express a concrete certificate op-

eration requested by a domain. All the fields in a CertOper
are explained as follows.

• Version Number, Signature Algorithm ID,

Signature Value, Extension Field are the

same as X.509 certificate.

• Subject Name: the name of a domain who requests a

certificate operation;

• Operator Name: the name of a CA who signs a

certificate and generates this data structure;

• Operation Type: three types of certificate operations

including registration, update, revocation.

• Timestamp & NotAfter: the generation time of an

operation, and the expiration time used by bookkeepers

to clear the expired revocation information.

• Current Certificate Hash: the hash of the sub-

ject domain’s certificate which is used for the process of

certificate validation.

• Last Operation Height: if the operation type is

registration, this field is null. Otherwise, it is filled in

the block height of the subject’s last certificate operation.

Due to this filed, as shown in Fig. 3, the CertOper in

blockchain can provide forward traceability.

2) DCBF-Dual Counting Bloom Filter: We present a revo-

cation checking method that utilizes the DCBF to eliminate

false positives. It has the property of economic space and

efficient query.
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Bloom filter [16] is a space-efficient probabilistic data

structure used to check whether an element is a member of a

set. In formulation, a Bloom filter is an array of m bits for

representing a set S = {x1, . . . , xn} of n elements. Initially all

the bits in the filter are set to zero. There are k hash functions,

hi(x), 1 ≤ i ≤ k used to map items x ∈ S to random number

uniform in range 1, . . . ,m. An element x ∈ S is inserted into

the filter by setting the bits hi(x) to one for 1 ≤ i ≤ k. To

test the set membership of an element y, we need to check

every bits hi(y). If any of them are zero, y is definitively

not in the set. In addition, the standard bloom filter dose not

support elements deletion. This function can be achieved by

counting bloom filter (CBF). In CBF, every bit is replaced by a

counter. When a hash of an element is mapped to a counter, it

increases by one. On the contrary, the counters corresponding

to the hash of deleted elements decrease by one.

In this paper, the certificates are divided into two sets: valid

certificates set and revoked certificates sets. We utilize two

CBFs (CBF1, CBF2) to record the certificates in these two

sets respectively. The new or updated certificates are inserted

into CBF1. If a certificate is revoked, it should be deleted

from CBF1 and inserted into CBF2. In this way, comparing

the query results from both CBFs, we can determine whether

a certificate is a false positive element, and then judge the

accurate status of this certificate by checking the related

operations in blockchain.

C. Extension layer

Based on Ourboros [17], we design our consensus protocol

by defining dependability-rank as the measurement of CA’s

trust and the probability of leader elected process. In this layer,

we describe the block and blockchain, consensus protocol and

the incentive mechanism.

1) The block and blockchain: The blockchain is maintained

by bookkeepers. We will give definitions about some concepts.

Definition 1: Dependability-rank. Dependability-rank di is

used to express the dependability degree of a bookkeeper or

a CA via evaluating their behavior.

Definition 2: Genesis block. The genesis block B0 contains

the list bookkeepers identified by their public-keys and respec-

tive dependability-rank value {(vk1, d1), . . . , (vkn, dn)}.

Definition 3: Block. A block Bi generated at a slot

sl ∈ {sl1, . . . , slR} contains the current state st ∈ {0, 1}λ,

operations root hash op ∈ {0, 1}∗, the slot number sl and

a signature σ = Signski
(st, op, sl) computed under ski

corresponding to the bookkeeper Ui generating the block.

Definition 4: Blockchain. A blockchain is a sequence of

blocks B0, B1, . . . , Bn. It holds that for each block Bi, the

state sti is equal to H(Bi−1), where H is a collision resistant

hash function. The length of a blockchain len(C) is the number

of blocks. The latest block of the blockchain is called head

block denoted head(C).
2) The dependability-rank based consensus protocol: The

consensus protocols in blockchain are responsible for solving

two problems. The one is the process of leader election that

elects one of bookkeepers to generate the next block. The other

is dealing with fork. In this paper, we design a dependability-

rank based consensus protocol which not only solves the

two problems mentioned above but also stimulates CAs and

bookkeepers to work positively and legally.

Definition 5: Leader Selection. A bookkeeper Ui is se-

lected to be the leader with probability pi of its dependability-

rank where pi =
di

Σn
j=1dj

. Leader selection process flips a p1-

biased coin to check whether the first bookkeeper is selected;

then, for all j ≥ 2, it flips a (1− p1) · · · (1− pj−1)pj biased

coin to check whether the j-th bookkeeper is selected.

Dependability-rank based consensus protocol

This is a protocol run by bookkeepers U1, . . . , Un interact-

ing themselves over a sequence of slots S = sl1, . . . , slt.
Before establishing the blockchain, via negotiating, each

corresponding CA gets their initialized dependability-rank

di through the percentage of the number of certificates

issued by itself accounting for the total certificates. The

protocol proceeds as follows:

1) Initialization When the protocol starts, each book-

keeper broadcasts their public key and dependability-

rank (pki, di). Then all of them get their genesis

block B0 which is used to initialize the blockchain

C = B0. The initial state is st = H(B0).
2) Chain extension For every slot sl ∈ S, every

bookkeeper Ui performs the following steps:

a) collects all valid blockchains into a blockchain

set C, verifying that for every block

Bi in each blockchain Cj , it holds that

V erifypkl
(σ′, (st′, op′, sl)) = 1 where pkl

is the verification key of the Ul generating

the related block. Ui calls the function

maxvalid(C,C) to select the new blockchain

C ∈ C and set state st = H(head(C)).
b) if Ui is selected as the leader in slot slk, it gen-

erates a new block B = (st, op, slk, σ) where st
is current state, op is the root hash of operations

and a signature σ = Signski
(st, op, slk). Ui

extends C by appending B and broadcasts C.



3) Incentive mechanism: It is well-known that CAs’ eco-

nomic benefit is derived from the domains’ certificates op-

erations. Based on Dependability-rank based consensus
protocol, we present an incentive mechanism that takes the

economic benefit and misbehavior into consideration. We

define that every CA shares the dependability-rank di with the

corresponding bookkeeper. According to the percentage of the

valid certificates issued by each CA every quarter, all CAs’

dependability-rank D = {d1, . . . , di, . . . , dn} is initialized.

The dependability-rank not only affects the probability of

leader election among bookkeepers in consensus protocol, but

also determines the operator of a domain’s certificate oper-

ation. The latter directly affects the CA’s economic benefits.

Any domain selects a CA that has the maximum dependability-

rank. If a CA issues a valid certificate, generates related op-

eration, or reports an entity’s misbehavior, it will be rewarded

with dependability-rank. The bookkeeper related to a CA that

has the maximum dependability-rank is elected to be the leader

with the highest probability. The elected CA will consume

some dependability-rank. Moreover, if a CA that is detected

having some misbehavior, such as signing illegal certificate

or issuing forge revocation information due to leakage of

private key, it will be punished in the form of a reduction in

dependability-rank, as well as the bookkeeper’s misbehavior,

such as omitting certificate operations.

D. Application layer

In this layer, we design the details of three types of

certificate operations and certificate validation.

1) Certificate registration: The domain A sends a certifi-

cate registration request RegReq = {CertA, CAi, Reg} to

a CA. (The CA is chosen according to the dependability-

rank. More details are described in III-C3). As the operator,

this CA checks the identity of the domain off-line and then

signs the certificate. After that, by calling algorithm 1, it

generates the corresponding CertOper with the operation

type of certificate registration. This CertOper is broadcasted

among all bookkeepers, and it will be recorded in blockchain

by the leader. The hash of this certificate will be inserted into

CBF1. After about six slots (one slot one block), CA return

the signed certificate and height back to domain A. The height

is used for the third steps in Certificate Validation.

2) Certificate update: When the expiration date (NotAfter
time) of a certificate is coming, the domain should request

for certificate update without changing other information.

Certificate update is similar with the process of certificate

registration. The CA who receives the update request generates

a CertOper with the type of certificate update. The field

of Last operation height in this CertOper is filled

with the related height value. The remaining process is the

same with certificate registration.

3) Certificate revocation: Certificate revocation can be re-

quested by a domain when its identity information is modified

or its private key is leaked.

After receiving a certificate revocation request RevReq,

the corresponding CA generates CertOper with the type

Algorithm 1 CertOper Generation

Input: CertA, OperaType, skCA.

Output: CertOper.

procedure OPERGEN(CertA, OperaType skCA)

SubjectName,NotAfter ← Extract{CertA};

if Reg = OperType then
h(CertA) = null;
Last Oper h = null ;

else
h(CertA) ← Hash(CertA);
Last Oper h ← query(SbjectName, T imestep)

σ ← Sign(Operation content, skCA)
return CertOper;

end procedure

Algorithm 2 Certificate Validation

Input: CertA, height, pkCA.

Output: b ∈ {1, 0}. (The certificate is valid or not.)

procedure CERTVAL(CertA, height, pkCA)

if 1 ← V erify(CertA, pkCA) then
TNotAfter ← Extract{CertA};

if TCurrent < TNotAfter then
send V erReq → a bookkeeper;

else return 0;

else return 0;

if 1 ← BCHECK(hashCertA , height) then return 1;

else return 0;

end procedure
procedure BCHECK(CertA, height)

Bi ← Search{C, height};

hashCertA ← Hash(CertA);
if 1 ← OperCheck(Bi, hashCertA) then

if 0 ← RevCheck(head(C), hashCertA) then
return 1;

else return 0;

end procedure

of certificate revocation, then broadcasts it among bookkeep-

ers. A bookkeeper firstly checks the operation type
and extracts the current certificate hash from this

CertOper if it is a revocation operation. And then, it puts

this CertOper and current certificate hash into

corresponding buffers respectively. The bookkeeper elected to

be the leader deletes all the revoked certificates in revocation

buffer from CBF1 and inserts them into CBF2. When a block

is generated, the DCBF consisting of CBF1 and CBF2 as

well as all CertOper are stored in this block.

4) Certificate validation: When a client C is ready to

establish a SSL/TLS connection with domain A, the certificate

CertA with the related height value height is provided by

domain A in handshake protocol. Then, the client needs to

initiate the process of CertV al with four steps: (1) verify the

signature; (2) check the expiration date; (3) check whether the
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corresponding certificate operation is stored in blockchain; (4)

check the certificate status (valid or revoked). The certificate

validation process is shown as algorithm 2.

The first two validation steps are the same with them

in traditional PKI. Therefore, we emphatically describe the

last two steps which are specific in our scheme. The

client C can launch a verification request V erReq =
{hashCertA , height}skC

to a bookkeeper. The bookkeeper

executes procedure BCHECK(hashCertA , height) by looking

up the related certificate operation in blockchain and querying

the DCBF for the status of CertA from the latest block.

The revocation checking steps in DCBF are shown as Fig. 4.

Then, it gives a response to the client. If the related certificate

operation is not stored in blockchain or the certificate status

is revoked, the TLS/SSL connection will be terminated.

IV. SECURITY ANALYSIS

Theorem 1: In CertChain, the certificate operation can be

traced efficiently and certificate revocation checking can be

fed back efficiently without false positives under DCBF.

Proof: We can find that, as shown in Fig. 3, for a given

certificate operation, we can get the history certificate opera-

tions efficiently without traversing the blockchain. The reason

is that the CertOpers provide certificate operation chains

for all domains whose certificate operations are recorded in

blockchain. For certificate revocation checking, it is well-

known that, compared with traditional data structure exploited

by CRL and OCSP, bloom filter is a space-economic and

query-efficient data structure. However, false positives brought

by bloom filter is unacceptable in certificate validation. In

CertChain, since all the certificates operations are recorded

in blockchain, it is easy to insert all valid certificates into

CBF1. When a certificate is revoked, it should be deleted

from CBF1 and inserted into CBF2. As shown in Fig. 4,

through two queries from CBF2 and CBF1, we can get the

accurate status of certificates. Though there is a small number

of certificates reported ambiguity by both CBFs because of

the false positive rate, we can determine the status of these

certificates through querying the blockchain.

Therefore, in Cerchain, the query of certificate operations

and revocation can be fed back efficiently.

Theorem 2: By self and public audit, CertChain can tolerate

the failure of defense mechanisms implemented in CAs or

bookkeepers under the threat model in section II-B.

Proof: Note that the process of certificate validation

launched by a client includes the existences checking for

the certificate operations in blockchain. According to this

characteristics of CertChain, all the corresponding operations

must be recorded in blockchain to receive self and public audit,

otherwise the certificates cannot pass the clients’ certificate

validation. Therefore, even if an attacker compromises a CA

and gets its private key to issue a certificate and operation

on blockchain, the manager of CA can detect this certificate

by traversing the blockchain. The certificate operations and

revocation information recorded in blockchain are also verified

by all other bookkeepers. Thus, the compromised bookkeepers

would be detected quickly.

Next, we analyze CertChain’s security against various at-

tacks.

DoS attacks: In practice, CertChain should be hosted on

DoS resilient infrastructure, likes a CDN. This makes it ex-

tremely difficult for an attacker to prevent CAs or bookkeepers

from generating or recording legitimate certificate operations.

However, DoS attacks cannot be defended absolutely. Assume

that a power attacker could block access to any CA or

bookkeeper by DoSing it. In CertChain, since the same kind

of entities such as CAs or bookkeepers are in parallel, the

entity attacked by DOS-ing could be replaced by others. But

in traditional PKI, if the CA or OCSP provider is under

attack, the result would be serious. Therefore, compared with

traditional PKI, CertChain can provide sustainable service

under the inescapable DoS attacks.

Rogue certificates or operations: In CertChain, all opera-

tions should be recorded in blockchain, which are available for

public audit. In section III-D4, certificates validation processes

include the existence of the relevant certificate operations. In

other words, if an adversary compromises a CA and issues a

certificate for a vicious domain, it should generate a related

operation stored in blockchain for public and self audit. The

CA’s manager can check the issued operations from blockchain

and will find the illegal certificate operations.

CA’s private key leakage: The CAs are the main roles who

are responsible for preventing from attacks and detecting mis-

behavior in CertChain. If an adversary gets a CA’s private key,

then it can issue certificates, generate operations, and revoke

certificates. Although these operations will be broadcasted

among bookkeepers, except the manager of this CA, no entity

would detect forge operations before the malicious web server

is reported to be dishonest. The reason is that all the certificates

and operations issued by this CA can pass the signature

verification with its public key. For an attacked CA, if its



manager detects certificate operations in blockchain without

identity check, it should issue the revocation information

directed for these certificates and update its private key as

soon as possible. In this case, the CA would not be punished in

the form of a reduction in dependability-rank. However, if the

malicious web server is reported by nodes in network before

the manager solving this problem, the corresponding certificate

operator will be seriously punished. Therefore, by self and

public audit, Certchain can mitigate this type of attacks.

V. EXPERIMENT AND EVALUATION

A. Implementation

We develop a prototype implementation of CertChain. The

main processes of CertChain are written in Javascript(node.js),

HTML, CSS, and PHP. We implement the domain by ex-

tending an Apache HTTP server (version 2.4.27), and create

CAs with OpenSSL. Bookkeepers’ implementation is based

on Ethereum [18], and the called API interfaces include 1)

web.eth.getBlock, 2) web.eth.getTransaction,

and 3) web3.eth.contract. Bookkeepers insert all

CertOper and DCBF in Merkle hash trees implemented

by SHA-512 which are stored in blockchain. We implement

the client by Firefox Developer Edition, because it offers

low-level APIs for obtain the certificate information. The

prototype is composed by ten CAs with Intel celeron E4300

(2.6GHz) CPU, 4G RAM, and Ubuntu 14.04 64bit operation

system. Correspondingly, ten bookkeepers are implemented

with Inter(R) Xeon(R) CPU E5-2682 v4 @2.5GHz, 4GB

RAM and Win server 2012 R2 Datacenter.

B. Result analysis

Firstly, we evaluate the basic characteristics of blockchain

from three aspects, the speed of block generation, the average

size of a block, and the capacity of a block. In Ethereum,

the size of a block is limited to 2MB. The difficulty that

determines the speed of block generation is adjustable. We

set the difficulty as 0x160000, so that blocks are generated

about every 6.7s on average. We measure that the size of an

empty block is about 2.6KB, and a single CertOper is about

1.8KB. We assume that we have one million certificates, and

under 5% revoked certificates. Then we get the size of the

DCBF about 412KB. All CertOper and DCBF are stored

in a block. Therefore, one block maximally contains more than

500 CertOpers.

Secondly, we investigate how long it takes for this infras-

tructure to process a certificate operation initiated by a domain

and a certificate validation initiated by a client. Measurements

are given as the average over 100 test runs, and the results

are presented in Table I. In a process of certificate operation,

a CA needs to generate two signatures for the certificate and

operation, which costs about 23ms. A bookkeeper who is the

leader needs to generate the MHT containing all CertOpers

and updates the latest certificate statuses in DCBF, and then

stores them into a block. Therefore, Bookkeepers costs about

130ms. The first two steps in certificate validation initiated by

a client cost about 9.5ms and the last two steps accomplished

TABLE I
PROCESSING TIME (IN MILLISECONDS) REQUIRED FOR THREE

CERTIFICATE OPERATIONS AND CERTIFICATE VALIDATION

Operation CA Bookkeeper (leader) Client

RegReq 23.21 130.54 –
UpdReq 23.05 131.36 –
RevReq 23.32 145.74 –
CertVal – 23.86 9.50

TABLE II
PROCESSING TIME (IN MILLISECONDS) OF EVERY STEP IN CERTIFICATE

VALIDATION

Client Bookkeeper

step step 1 step 2 step 3 step 4
detail V Sign Ch NotAfter Query MHT Query DCBF

time 6.12 2.01 13.66 6.77

by a bookkeeper cost about 23.86ms. In practice, we mostly

care about the whole processing time of certificate validation

which directly affects the clients’ website experience. We

measured the detail processing time from four steps as shown

in Table II. The former two steps are the same as in traditional

PKI. The latter two steps are executed by a bookkeeper. The

processing time in the third step includes block lookup process

according to the height and Merkle Hash Tree query. The last

step is to check the status of certificate. Note that, to determine

the status of a false positives certificate in CBF, extra time

is cost to query blockchain. Fortunately, we make the false

positive rate low enough, so the processing time of these two

steps is nearly stable.

Thirdly, we give a comparison about the space cost and

TLS handshake latency between Certchain and other schemes

in certificate revocation. We measure the space requirement

of CCSP, standard bloom filter, and counting bloom filter

with different percentage of revoked certificates. As shown

in Fig. 5, CCSP needs the smallest space and CBF requires

the largest space. The reason is that for the lower percentage

of revoked certificates, more than 99% bits in CCSP’s bitmap

are 0. After compressing, the space is small indeed. Based on

the standard bloom filter, CBF replaces the bit with counter,

so the space is large. However, compared the size of a block,

this space requirement is acceptable. We also compare the

TLS handshakes latency among OCSP, CCSP, and Certchain

as shown in Fig. 6. In OCSP, the average latency is 250ms

[15]. The latency in CCSP is a little higher than 120ms [12].

Compared with these two, under different CBF false positive

rate, we find that the latency of CertChain is about 55ms. The

query time increases with the false positives reducing, while

this increase is too small. Compared with Certchain, CCSP

cost more time, because it must extract the compressed bitmap

when the client checks the status of a certificate. What’s more,

CertChain provides a distributed revocation checking service

rather than a centralized server which is vulnerable under

single-point-failure.
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Finally, from ten pairs of CAs and bookkeepers, we investi-

gate the relationship between the number of certificates issued

by a CA and blocks generated by the relative bookkeeper. As

shown in Table III, we find that the ratio of certificates issued

by CAs are uniform as well as the number of blocks. In other

words, our scheme achieve the goal of consensus fairness.

VI. RELATED WORK

A. CA-based trust disperse

The core of traditional PKI is the ecosystem of CA which is

responsible for issuing and maintaining SSL certificates. How-

ever, recent compelling real-world attacks have demonstrated

existing CA’s vulnerability. Multi-cooperation and limited-

policy are the most common methods to solve this problem.

In Cosigning [5], Syta et al. propose a multi-signature

scheme that adapted a scale of thousands witness. However,

there are some problems not being taken into consideration.

For instance, in order to certify the correctness of a signature,

a verifier needs to get a collective public key which is

constituted of all the keys of witnesses who participate in

signing the message. In other words, it has to verify the

identity of the witness and its public key. In ARPKI [6], Basin

et al. present an attack resilient PKI by signing, checking,

sending certificates among multiple CAs in line. It improves

the security of PKI, but it also brings in the problem of

sustainable service because each CA is the target of Denial

TABLE III
COMPARISON BETWEEN THE NUMBERS OF CERTIFICATES ISSUED BY CAS

AND BLOCKS GENERATED BY THE RELATIVE BOOKKEEPERS

No. Num Cert Num Block No. Num Cert Num Block

1 18 147 6 20 154
2 19 150 7 19 153
3 20 151 8 21 150
4 18 147 9 20 155
5 19 150 10 19 147

of Service (DoS) attack. In TriPKI [4], Jing et al. put forward

a certificate management scheme based on threshold signature

to resist single-point failure by introducing multiple CAs and

DNSs and together with integrity log servers. Note that in

practice, the CA companies are competitive not cooperative,

even if the CAs are denoted servers in one company. There-

fore, this method may be too expensive to implement. The

authors of [4] and [9] take the idea of mutual verification into

consideration to monitor the misbehavior. But sometimes, the

introduced entities bring in new vulnerability or become the

bottleneck. In fact, there exist some researches to improve the

TLS PKI about CAs’ misbehavior based on blockchain smart

contact. Matsumoto and Reischuk present the IKP [19] that

automates response to unauthorized certificates and provided

incentives for CAs to behave correctly. However, this scheme

neither provides certificate public audit nor handles certificates

revocation checking.

B. Log-based misbehavior monitor

In traditional PKI, certificates are held by domains and CAs.

In other words, a certificate is only verified by the browser

when a client access the website. To make the certificates

public audit, Google firstly presented Certificate Transparency

(CT) [7] for monitoring and auditing certificates. Through a

system of certificates logs, monitors, and auditors, CT allows

website users and domain owners to identity mistakenly or

maliciously issued certificates and identify CAs that have

gone rogue. The key idea of this scheme is introducing log

servers that maintain append-only databases of certificates

issued by CAs. These databases are implemented as merkle

hash trees [20] which provide efficient proofs of a certificate’s

presence. Thus, an unauthorized certificate will be exposed to

the public. Inspired by this idea, in [6, 7, 9, 10, 21], the authors

introduce the log servers to record Certificates or revocation

information. Unfortunately, log-based PKIs suffer from several

other problems. First, log servers expands the attack surface

of the whole system. Second, several log-based PKIs require

all logs to periodically synchronize certificates, but they do

not provide a secure synchronization protocol. Finally, log-

based PKIs do not provide sufficiently incentive to record or

monitor entities’ behavior. Therefore, log-based PKIs may not

work securely as expected.

C. Enhancing Certificates Revocation Service

Aimed at the problem of certificate revocation, some efforts

are proposed recently, such as Google’s CRLset [22] and



Mozilla’s OneCRL [23]. Both of these two schemes would

have significant difficulty in scaling to handle millions of

certificates, because their data formats use 110 and 1,928

bits per revocation respectively. Additionally, they require

users to place unconditional trust in Google and Mozilla,

since these data structure are not auditable publicly. Chariton

et al. present a Compressed Certificate Status Protocol (CCSP)

[12] that is able to pack revocation information more than

one million certificates in less than 10KB of space. CCSP

introduces a new notion of signed collections, a bitmap used

to record the revocation status of certificates. It utilizes two

compression algorithms to achieve that it is possible in s
bits to fit revocation information for more than s certificates.

Larisch et al. propose a certificate revocation scheme [11]

which aggregates revocation information and stored them in a

space-efficient filter cascade data structure with neither false

positive nor negative rate. Both of [11] and [12] update their

latest status of revocation information by bitwise XOR within

hours. For those certificates revoked in this period, they may

be captured by attackers.

VII. CONCLUSION

To establish secure SSL/TLS connections, we propose

a public and efficient certificate audit scheme based on

blockchain (CertChain) in this paper. It applies characteristics

of blockchain to provide a decentralized and tamper-proof

public audit certificates management. Specially, we design

a distributed dependability-rank based consensus protocol to

avoid centralization in practice. We also propose a new data

structure called CertOper that is stored in blockchain for

forward traceability and public audit. To achieve economic

space and efficient query for certificate revocation checking,

we present a method that utilizes Dual counting bloom filter

(DCBF) with eliminating false positives. The security proof

and experimental results show that Certchain is suitable in

practice.
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